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This paper develops a theory of resonant Raman scattering within the framework of a localized model.
Expressions for the scattering amplitude and cross section are derived by employing the methods of spherical-
tensor analysis; a simple factorization is obtained for the geometrical~angular dependence! and electronic
~matrix element! components, which can therefore be studied independently. Photon polarization effects are
examined. It is shown that, for fast collisions, the integrated intensity is expressible by way of spin and orbital
effective operators, thus allowing for a simple interpretation of the scattering process. For the 2p→4 f ,
3d→2p resonance in Gd31, Dy31, Ho31, and Er31, numerical calculations of the cross section are discussed.
In the case gadolinium, the agreement between calculations and experiments provides further evidence for the
quadrupolar nature of certain spectral features.@S0163-1829~96!05046-1#

I. INTRODUCTION

In the absence of anab initio technique able to account
for the full electron-electron interaction, the determination of
the electronic structure in rare-earth systems has been ap-
proached from two opposite limits. As shown by inverse
photoemission1 and 3d x-ray absorption2 data, the localized
4 f electrons are well described by atomic, full-multiplet
theory. An atomic framework is, however, inappropriate for
describing the broad 5d band, and cannot explain the itiner-
ant magnetism in a large number of rare-earth compounds.
For these delocalized, largely unoccupied states, which are
responsible for the interaction between the local 4f mo-
ments, a suitable theoretical description is provided by spin-
polarized band-structure calculations, where exchange and
correlation are treated within the local density approximation
~density functional theory!. For the 4f electronic states in
rare-earth-containing materials this approximation is
inadequate.3

Experimental information about the 5d states can be gath-
ered through 2p x-ray absorption spectroscopy~XAS!.4 The
corresponding spectra have, in general, an electric multipole
character, with the above-edge structure assigned to dipolar
transitions to the 5d band, and the pre-edge features ascribed
to quadrupolar transitions to the narrow 4f states.5–8 As the
spectral resolution is rather broad, reflecting the short life-
time of the core excitation, it is difficult to fully disentangle
the pre-edge structure from the remaining part of the spec-
trum.

Attempts have been made to overcome such a broadening
by performing absorption-followed-by-emission experi-
ments, considered as a single process: x-ray resonant Raman
scattering~XRRS!.9 Notice that in this case the total electron
or fluorescence yield is not measured. Only the energy of the
photon in a single emission channel~the decay to a shallower
core-hole final state! is detected, and narrower features are
indeed observed. These do not stem, however, from a sharp-
ening of the absorption process; instead, they are seen to
arise from the structure of the final states, where the long
lifetime of the shallow core hole results in a small spectral
broadening.10

Upon tuning across the XRRS transferred energy, the 4f
and 5d spectra appear clearly separated, a valuable feature in
the study of the electronic structure of rare-earth systems.
However, its full exploitation requires setting up a solid
theoretical framework for XRRS, aimed at interpreting two
general aspects of core-level spectroscopy: integrated inten-
sities and spectral line shapes.

As shown for x-ray absorption and dichroism, a symmetry
analysis of integrated intensities results in powerful sum
rules,11,12relating the integral of the spectra, over a spin-orbit
split edge, to the ground-state expectation value of spin and
orbital coupled-tensor operators. When the scattering is fast,
i.e., when the core-hole propagation in the intermediate state
can be neglected, a similar coupled-tensor expansion for
XRRS can be derived. The scattering is formally equivalent
to an absorption process, in this case.

The importance of a proper determination of the spectral
line shapes is not superseded by the amount of information
contained in the integrated spectra: We have to make certain
of the nature of the spectrum, for a correct application of the
sum rules; as observed, 2p magnetic circular dichroism can-
not simply be explained on the basis of electric dipolar tran-
sitions.

By resorting to the methods of spherical-tensor analysis,
in the context of a single-ion picture, this paper develops a
theory of XRRS. Technically, the derivation is laborious, as
we are dealing with a two-photon process. Angular-
momentum-recoupling techniques are employed to deter-
mine the symmetry~therefore the nature! of the cross sec-
tion, as a function of photon polarization and scattering
geometry. It is hoped that the reader with insufficient back-
ground will still be able to grasp the general lines of the
work, omitting the algebraic details.

The outline of the paper is as follows. General expres-
sions for the scattering amplitude and cross section are de-
rived in Sec. II, with the special case of isotropic radiation
treated in detail. Sec. III dicusses the fast-collision approxi-
mation and reports a numerical estimate of its range of ap-
plicability. Accurate numerical calculations for Gd31,
Dy31, Ho31, and Er31 are expounded in Sec. IV, where a
comparision between analytical results and experimental
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data is also made. Section V contains our concluding re-
marks.

Part of this work has previously been published.10

II. THEORETICAL FRAMEWORK

A. XRRS scattering amplitude

In a rare-earth ion, XRRS proceeds from the
excitation of electric dipole and quadrupole transitions.
An appropriate description of the process is obtained
by expanding thep•A interaction between electrons and
x rays into Bessel functions and spherical harmonics:
p•egl(kr)(mYm

l ( k̂)Ym
l ( r̂ ). Here,e and k̂ denote the polar-

ization and a unit vector in the direction of the photon mo-
mentum of the photon, respectively. Recouplingp and
Ym
l ( r̂ ) to a totalL results in the term

†@e,Ym
l ~ k̂!#L@p,Ym

l ~ r̂ !#L‡0gl~kr !, ~1!

with the couplings defined via Clebsch-Gordan coefficients

@Al 8,Bl 9#m
l [ (

m8m9
Cl 8m8; l 9m9
lm Am8

l 8 Bm9
l 9 . ~2!

In the limit kr!1, the valuel5L21 yields the largest con-
tribution; this term can be rewritten as

@p,YL21~ r̂ !#M
L r L215

1

AL~2L11!
p•“~r LYM

L !, ~3!

so that

^c2up•A1A•puc1&;
2m~E22E1!

i\AL~2L11!
^c2ur LYM

L ~ r̂ !uc1&,

displaying the familiar electric multipole matrix element.
In this formulation, the x-ray XRRS amplitudef L,L8 can

be written as

f L,L854p|(
z

(
z52z

z

Tz
~z!* ~e,k,e8* ,k8!

3^ f uFz
~z!~L,|,L8,|8!ug&, ~4!

that is, as a linear combination of pairs of tensors of increas-
ing rankz; here,|5uku21. Each pair consists of an angular
factor and of a frequency-dependent transition operator. The
angular factor, determined by photon polarizations and wave
vectors, is given by

Tz
~z!* ~L,L8!5 (

M ,M8
CL8M8;LM
zz

@e•YLM* ~ k̂!#

3@e8* •YL8M8~ k̂8!#,

with YLM( k̂) a vector spherical harmonic of electric type.13

In the second quantization formalism, the frequency-
dependent transition operator takes the form

Fz
~z!~L,|,L8,|8!5RL|

L8,|8~c1 ,l ;c2 ,c1! (
l z ,s,all m

Sz
~z!

3~L,L8!cj 1m18
†

cj 2m2
G~vk!l l zs

† cj 1m1
,

~5!

with

G~vk!5(
n

un&^nu
Eg1\vk2En1 iGn/2

~6!

andvk the energy of the ingoing photon. Also,

RL,|
L8,|8~c1 ,l ;c2 ,c1!5K~c1 ,L,l ,|!K~c2 ,L8,c1 ,|8!

3^Rn1c1 j 1
~r !ur L8uRn2c2 j 2

~r !&

3^Rnl~r !ur LuRn1c1 j 1
~r !&,

with

K~c,L,l ,|!52
e

|L11/2 i
L

Cc0;L0
l0

~2L11!!!

3F ~2c11!~2L11!~L11!

L~2l11! G1/2
and ^Rnc j(r )ur LuRn8c8 j 8(r )& the radial matrix element.

The angular dependence of the transition operator
Sz
(z)(L,L8) is given by

Sz
~z!~L,L8!5 (

M ,M8
g1g2g18s8

CL8M8;LM
zz

~2 !L82M8C
c1g

18 ;
1
2

j 1m18

s8

3C
c2g2 ;s8/2
j 2m2 C

c1g1 ;
1
2

j 1m1

s
C
c2g2 ;L82M8

c1g18 Cc1g1 ;LM
ll z .

~7!

In these expressions, the operatorscj 1m1
andcj 2m2

create
a core hole in the intermediate and final states, respectively;
l l zs
† denotes the creation operator for outer-shell electrons.

Core electrons are denoted by spin-orbit coupled quantum
numbers (j i5ci6

1
2, i51,2); outer-shell electrons are la-

beled by uncoupled orbitals. The intermediate statesun& are
eigenstates of the Hamiltonian of the system with energy
En ; they are assumed to be of the form
un&5( l zsm1

alzsm1
l ls
† cj 1m1

ug&. This amounts to neglecting
many core-hole decay processes, e.g., nonradiative~Auger!
decays, which might occur before the core hole (j 1) is filled
by a core electron (j 2). In order not completely to disregard
these events, a finite widthG>pruVAu2, with VA the Auger
matrix element andr the density of states in the continuum,
has been introduced. The final statesu f & differ from the ini-
tial one ug& by the presence of a particle-hole excitation.
Figure 1 provides a schematic~one electron! picture of the
resonance.

When the scattering is fast, so that photon absorption and
emission are practically simultaneous, the energy dispersion
of the intermediate state can be neglected;17,18 this amounts
to replacingG(vk) with
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Ḡ~vk!5
1

Eg1\vk2Ēn1 i Ḡn/2
,

with Ēn the ‘‘central’’ energy of the transition andḠn its
corresponding width. As a result, thej 1 core hole drops out
~no propagation! of the amplitude

^ f ucj 1m18
†

cj 2m2
l l zs
† cj 1m1

ug&5dm1 ,m18
^ f ucj 2m2

l l zs
† ug&. ~8!

More insight into the nature of the scattering process is
obtained by rewriting expression~7! by use of standard tech-
niques of angular momentum theory.14,15Given the relations

~21!L82M8@ j 1 j 2c1#
21/2 (

g18s8g2

C
c1g

18 ;
1
2

j 1m1

s8
C
c2g2 ;

1
2

j 2m2

s8

3C
c2g2 ;L82M8

c1g18 5~21!c11m121/2S j 1 j 2 L8

2m1 m2 2M 8D
3H j 1 j 2 L8

c2 c1
1
2 J ~9!

and

(
j
Cxj;b8b8
a8a8 Cxj;aa

bb 5~21!b1b1b82b8@a8b#1/2

3(
yh

~21!y2h@y#

3S a a8 y

2a 2a8 2h D
3S y b8 b

2h b8 b D H b b8 y

a8 a xJ , ~10!

we find

Sz
~z!~L,L8!5~21! j 11 j 211@ j 1#@ j 2c1zl#

1/2H j 1 j 2 L8

c2 c1
1
2 J

3(
jm

@ j #H j 1 j L

l c1
1
2 J H L L8 z

j 2 j j 1J
3S 1

2 l j

s l z 2mD S j z j2

m 2z 2m2D , ~11!

where the notation@a•••b#5(2a11)•••(2b11) has been
employed.

The recoupled form ofS(z)(L,L8) @the reader should pay
attention to the last 3j symbol in expression~11!# provides a
simple interpretation of the scattering process: When the
scattering is fast, XRRS amounts to an effective 2z-pole ab-
sorption from the core levelj 2m2 to the valence empty state
( l 12) jm. Notice that, in this case, the transition operator is not
purely orbital; it also depends on spin, as the spin-orbit in-
teraction in the intermediate state allows for spin transitions,
even in the absence of spin-orbit coupling in the ground and
final states.

B. XRRS cross section for fast collisions

In the fast collision approximation, the coupled-
multipolar expansion leads to the following form for the
double-differential scattering cross section (\51):

d2s

dVk8d\vk8
58p|2E

2`

`

dt ei ~vk2vk8!t

3(
rr

(
zz8
T r

~zz8!r* ^guOr
~zz8!r~ t !ug&, ~12!

with the geometrical factorT r
(zz8)r given by

T r
~zz8!r5(

zz8
Czz;z8z8
rr Tz

zTz8
z8 . ~13!

The scattering operator can be written as

Or
~zz8!r~ t !5uAL,|

L8,|8~vk!u2(
zz8

Czz;z8z8
rr

3 (
l zl z8ss8

m1m18m2m28

Sz
~z!†Sz8

~z8!cj 2m28
†

~ t !l l z8s8~ t !l l zs
† cj 2m2

.

~14!

The quantity

AL,|
L8,|8~vk!5Ḡ~vk!RL,|

L8,|8

denotes a dimensionless reduced scattering amplitude.
As observed, Eq.~11! describes an absorption process,

induced by an effective photon of energyvk2vk8. Integrat-
ing overvk8, i.e., summing over the final states allowed by
energy conservation, leads to an expansion for the integrated
cross section in terms of coupled-tensor operators, formally

FIG. 1. One-electron picture of a resonant Raman process. Nor-
mally, in a rare-earth ionc152p, c253d, and l54 f .
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equivalent to the sum rule analysis for x-ray absorption and
dichroism.11,12 In view of the following discussion, the ex-
pansion is best performed by working with each photon
coupled to itself.@Equation~12! employs an alternative for-
mulation, with ingoing and outgoing photons coupled to-
gether.# This amounts to a redefinition of the geometry fac-
tors:

T r
~zz8!r→T̃ r

~zz8!r5(
zz8

Cz2z;z82z8
rr T̃z

z~L !T̃z8
z8~L8!,

with

T̃z
z~L !5 (

M ,M8
CLM8;LM
zz

@e•YLM* ~ k̂!#@e* •YLM8~ k̂!#.

The scattering operator is transformed accordingly:

Or
(zz8)r→Or

(zz8)r . We find

ds

dVk8
>8p|;2 (

zz8rr
T̃ r

~zz8!r* ~L,L8!^Or
~zz8!r~0!&, ~15!

with

O0
~zz8!r~ t !5uAL,|

L8,|8~vk!u2(
zz8

Czz;z8z8
r0

3 (
ll8ss8
m1m18m2

Sz
~z!†Sz8

~z8!l l z8s8~ t !l l zs
† ; ~16!

here, the bracketŝ•••& are a shorthand for the ground-state
expectation value.

Consider the absorptive part of the scattering operator

Sz
~z!5 (

g1g18

MM-

CLM ;LM-
zz C

c1g
18 ;

1
2

j 1m18

s8
C
ll z8;L2M-

c1g18

3C
c12g1 ;

1
2 2s

j 12m1

Cc1g1 ;LM
ll z . ~17!

By applying the Wigner-Eckart theorem, and recoupling
with use of the identity

(
mm8

Caa8;bb8
jm8 Ca2a;b2b

j2m S j j z

m8 2m 2z D
5@ j #(

xj
yh

~21!x2j1y2h@xy#S a a x

a8 2a j D
3S x z y

2j z h D S y b b

2h b 2b D H a b j

a b j

x y zJ ,

~18!

followed by Eq.~10!, we find

(
ll8ss8m1m18

zz8

Czz;z8z8
rr Sz

~z!~L !Cj 1m18 j 12m1

z8z8 nj 1z8
21 l l z8s8l l zs

†

5(
ab
Cj 1
abrzz8~c1 ,L,l !wr

~ab!rnLznzz8r
21 @zz8#1/2

@c1lr #1/2
, ~19!

where

Cj 1
abrzz8~c1 ,L,l !5(

x
@ j 1c1labrx#H a b r

z z8 xJ
3H c1

1
2 j 1

c1
1
2 j 1

x b z8
J

3H L l c1

L l c1

z a xJ nlansbnabrnLz
21nj 1z8

21 nzz8r .

~20!

In a similar way, the emitting part of the scattering operator

Sz8
~z8!

5 (
M8,M9

CL8M8;L8M9
z8z8 @ j 1 j 2c1c2#

1/2

3H j 1 j 2 L8

c2 c1
1
2 J 2

C
L8M8; j 12m1

j 22m2 C
L8M9; j 22m2

j 12m18

~21!

yields

(
m2

Sz8
~z8!

~L8!5Bj 1 j 2
z8 ~c1L8c2!Cj 1m18 j 12m1

z8z8 nL8z8
@c1c2#

1/2nj 1z8
,

~22!

with

Bj 1 j 2
z8 ~c1 ,L8,c2!5~21! j 11 j 21c11c2@ j 1 j 2c1c2#

3H j 1 j 2 L8

c2 c1
1
2 J 2H L8 L8 z8

j 1 j 1 j 2J
3nj 1z8nL8z8

21 . ~23!

The normalizing factors

nst5S s t s

2s 0 sD 5
~2s!!

A~2s21!! ~2s1t11!!
~24!

and

nstu5S s t u

0 0 0D ~25!
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have been introduced to obtain rational expressions for the

coefficientsBj 1 j 2
z8 (c1 ,L8,c2) andCj 1

abrzz8(c1 ,L,l ).

The previous results lead to the following form for the
scattering operator:

Or
~zz8!r~0!5uAL,|

L8,|8~vk!u2(
ab
Cj 1
abrzz8~c1 ,L,l !wr

~ab!rBj 1 j 2
z8

3~c1 ,L8,c2!nLznL8z8nzz8r
21 @zz8#1/2

@ lc1
2c2r #

1/2. ~26!

This is our main analytical result for aj 1 j 2 resonance. In-
serted into Eq.~15!, it yields the XRRS cross section, inte-
grated overvk8, as the ground-state expectation of a linear
combination double-tensor operators^w(ab)r&. These tensors
describe the multipole moments of the charge and magnetic
distribution of the valencel electrons. The indexesa andb
denote the orbital and spin parts, respectively; their values
are limited toa50, . . . ,2l andb50,1, because of the triads
( l ,l ,a), and (12,

1
2,b). For b50, the operators are purely or-

bital; for b51, they depend on spin.
The relation between double tensors and second-

quantization operators has been established by Judd16

through the relation

Wr
~ab!r52 (

l zl z8,ss8
ab

Ca2a;b2b
rr Cl

z8; l z

aa
C 1

2 s8;
1
2 s

bb
l l
z8s8l l zs

† ;

~27!

his formalism has been applied to XAS spectroscopy,11,12

x-ray anomalous scattering,17,18 and photoemission.19 In the
present work we employ rescaled coupled-tensor operators,
defined by20,21

wr
~ab!r5~21!a2b1r@abr#21/2nla

21nsb
21nabr

21Wr
~ab!r , ~28!

to remove the normalization of the Clebsch-Gordan coeffi-
cients. This normalization is irrelevant when dealing with the
physical operators, that is, the coupled tensorsWr

(ab)r ex-
pressed in terms of elementary spin and orbital operators.16,22

„Examples of physical operators are provided by

nh5w0
000 ~number of holes!,

Lj52r l1r s0wj
10152 lwj

101 ~orbital momentum!,

Sh52r l0r s1wh
01152swh

011 ~spin!,

L•S5r l1r s1w0
1105 lsw0

110 ~spin orbit!.

Similar identities can be obtained for higher-rank tensors.…

Expressions~27! and ~28! define coupled-tensor operators
for the valence empty states~holes!.

The scaling factor

nzz8r~c1LlL 8c2!5nLznL8z8nzz8r
21 @zz8#1/2

@ lc1
2c2r #

1/2, ~29!

arising from the normalization constants, can be conve-
niently absorbed into the angular dependence; this is
achieved by redefining the cross section in terms of

T̄ (zz8)r5 T̃ (zz8)rnzz8r and Ō(zz8)r5Õ(zz8)r /nzz8r . In this way,
a simple and transparent factorization of the scattering op-
erator

^Ōr
~zz8!r~0!&5uAL,|

L8,|8~vk!u2Bj 1 j 2
z8 ~c1 ,L8,c2!(

ab
Cj 1
abrzz8

3~c1 ,L,l !^wr
~ab!r&. ~30!

is obtained.
As for the amplitude@see Eq.~3! and ensuing discussion#,

the coupled-multipolar expansion yields the scattering cross
section as a linear combination of pairs of tensors of increas-
ing rank r , which transform according to the irreducibile
representations of the spherical group~SO3). Consider

^Ōr
(zz8)r& and keep in mind that, to yield a nonzero value, the

operatorO(zz8)r has to be totally symmetric. In spherical
symmetry onlyr50 has such a property. In lower symmetry,
also thoser.0 tensors that branch to the totally symmetric
representation will contribute to the scattering.

Specific examples will help clarify this point. The case of
a magnetic system with negligible crystal fields amounts to
considering the irreducibile representations of the cylindrical
group; they are given by the group~SO3) → subgroup
~SO2) branching:r→r5$2r , . . . ,r %, with r50 the totally
symmetric representation. Only the linear combination

(
r

(
zz8
T̄ 0~zz8!r* ^Ō0

~zz8!r& ~31!

will therefore contribute to the scattering cross section. This
result can be generalized to any point-group symmetry,
where the totally symmetric representations are usually de-
noted byA1. ~Details about this simple group-theoretical
analysis of x-ray resonant scattering can be found in Ref.
23.! The remaining part of this work will be restricted to the
case of SO2 symmetry .

As pointed out, the linear combination

(
ab
Cj 1
abrzz8~c1 ,L,l !^w0

~ab!r&

describes the excitation~absorption! process. The deexcita-
tion ~emission! process is governed by the factor

Bj 1 j 2
z8 (c1 ,L8,c2), yielding the probability of detecting

z8-polarized radiation emitted in thej 2→ j 1 decay.
The~most probable! l5c11L transition results in simpler

coefficients; we find

Cj
1
1
abrzz8~c1!5(

x
@arx#

@c1#nc1x
2

2nj
1
1z8
2 H a b r

z z8 xJ
3nxbz8nzz8rnabrnxaz ~32!

and

Cj
1
2
abrzz8~c1!5~21!b 12 @ j 1

2ar#nabr
2 nzz8r

2 , ~33!

with j 1
65c16

1
2.
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In the specific case of a 2p→4 f absorption in cylindrical

symmetry, the permitted terms(abCj 1
abrzz8^w0

(ab)r& are listed

in Table I. Only the triads (zz8)r allowed by ingoing qua-
drupolar and outgoing dipolar radiation are included in the
table.

For the coefficientBj 1 j 2
z8 (c1 ,L8,c2), numerical values of

interest are given in Table II. Notice that thej 25
5
2→ j 15

1
2

electronic transition is forbidden; owing to Coulomb mixing,
theL2M5 edge has, however, a small but finite intensity.

C. Isotropic outgoing photon

The expressions for the integrated intensities, which were
derived in the previous section, are general. Most experi-
ments are, however, performed without detecting the polar-
ization of the outgoing beam. This is the case of an isotropic
outgoing photon. It corresponds to settingz850 in Eq. ~26!,
implying z5r , and yielding

^Ō0
~r0!r~0!&5uAL,|

L8,|8~vk!u2Bj 1 j 2
0 ~c1 ,L8,c2!(

ab
Cj 1
abrr0

3~c1 ,L,l !^w0
~ab!r&. ~34!

Restricting ourselves to the particular casec15 l2L
5c22L8, we rewrite the functionCj

1
6
abrr0

(c1) as a product of

two factors:

Cj
1
6
abrr0

~c1!5Mb~ j 1
6!Nabr . ~35!

Using the reduction formula given in Appendix A and the
fact that 2@b#nsb

2 51, the functionsMb( j 1
6) can be given the

form

Mb~ j 1
1!5 1

2 @ j 1
1c1#nc1b

2

and

Mb~ j 1
2!5~2 !b 12 @ j 1

2#,

so that

Mb~ j 1
1!1Mb~ j 1

2!5@c1#db,0 , ~36!

Mb~ j 1
1!2

c111

c1
Mb~ j 1

2!5@c1#db,1 . ~37!

Thus, adding the two partners of a spin-orbit split edge
( j 1

6) provides the spin-independent part (b50) of the inte-
grated intensity; a ‘‘weighted’’ difference, Eq.~37!, yields
the spin-dependent (b51) counterpart. The remaining factor
Nabr is defined by

Nabr5@a#nabr
2 ;

special cases of interest are

Nr0r5@r #nr0r
2 51,

Nr21,1,r5@r21#nr21,1,r
2 5

r

@r #
, ~38!

Nr11,1,r5@r11#nr11,1,r
2 5

r11

@r #
.

In the case of outgoing isotropic radiation, the emission pro-
cess, determined by

TABLE I. The combinations(abCj 1
abrzz8^wabr& for the excita-

tion of a 2p ( j 15
3
2,

1
2! core hole into the 4f shell, as a function of

r ,z,z8. Whenz1z81r is odd, the values$@r #2/(@r #221)%wr1r are
tabulated.

rzz8 j 15
3
2

000 2w0001w110

011 1
9 (5w

00014w110)
022 1

5 (w
00012w110)

101 1
9 (10w

011115w10112w211)
110 1

3 (w
01116w10112w211)

112 2
15(5w

01113w1011w211)
121 2

45(w
011115w101111w211)

132 9
35(w

10112w211)
202 2w1121w202

211 2
45(17w

112125w20213w312)
220 1

5 (2w
112110w20213w312)

222 2
35(7w

11215w20213w312)
231 1

35(2w
112125w202118w312)

242 2
7 (w

20212w312)
312 3

5 (2w
2131w303)

321 1
35(24w

213135w30314w413)
330 1

7 (3w
213114w30314w413)

332 4
105(9w

21317w30315w413)
341 4

189(3w
213135w303125w413)

422 18
35(2w

3141w404)
431 4

189(31w
314145w40415w514)

440 1
9 (4w

314118w40415w514)
442 20

693(11w
31419w40417w514)

532 10
21(2w

4151w505)
541 5

297(38w
415155w50516w615)

543 20
1001(26w

41517w615)
642 5

11(2w
5161w606)

rzz8 j 15
1
2

000 w0002w110

011 1
3 (w

0002w110)
101 1

3 (2w01113w10122w211)
110 1

3 (2w01113w10122w211)
121 2

15(2w01113w10122w211))
211 2

15(22w11215w20223w312)
220 1

5 (22w11215w20223w312)
231 3

35(22w11215w20223w312)
321 3

35(23w21317w30324w413)
330 1

7 (23w21317w30324w413)
341 4

63(23w21317w30324w413)
431 4

63(24w31419w40425w514)
440 1

9 (24w31419w40425w514)
541 5

99(25w415111w50526w615)
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Bj 1 j 2
0 ~c1 ,L8,c2!5@c1c2 j 2#H j 1 j 2 L8

c2 c1
1
2 J 2

~39!

can only provide information about the number of holes,
which are created in the absorption process with
z-polarized radiation. Adding the two final-state edges yields

(
j 25 j 2

1 , j 2
2
Bj 1 j 2
0 ~c1 ,L8,c2!5@c2#. ~40!

When z850, the multipolar expansion for the XRRS
cross section is very similar to that obtainable for the absorp-
tion coefficient, in the x-ray region. In establishing this con-
nection, it is convenient to normalize expression~34! to the
total isotropic intensity, defined as

^Ō0
~00!0&5(

j 1 j 2
^Ō0

~00!0~0,j 1 , j 2!&

5uAL,|
L8,|8~vk!u2@c1c2#^nh&, ~41!

where the sum runs over the pairs of partnersj 1 , j 2; we have

^Ō0
~r0!r~0,j 1 , j 2!&5

^Ō0
~r0!r~0,j 1 , j 2!&

^Ō0
~00!0&

. ~42!

Spin-independent scattering is then described by

^Ō~z0!z~ j 1
1!&1^Ō~z0!z~ j 1

2!&5
1

^nh&
^w0

~z0!z&. ~43!

For the spin-dependent operators, we find

^Ō~z0!z~ j 1
1!&2

c111

c1
^Ō~z0!z~ j 1

2!&

5
1

^nh&
H z

@z#
^w0

~z21,1!z&1
z11

@z#
^w0

~z11,1!z&J .
~44!

Experimentally, the excitations to the 4f shell and to the
5d band are separable only at theL3M5 edge, that is, for the
j 1

1 j 2
1 resonance.

At a given edge, the normalization to the isotropic spec-
trum is impractical, as

^Ō0
~00!0~0,j 1

1 , j 2
1!&5Bj

1
1 j

2
1

0
~c1 ,L8,c2!M0~ j 1

1!

3H ^w0
~00!0&1

c1
c111

^w0
~11!0&J ,

~45!

which contains the ground-state expectation value of the
valence-band spin-orbit coupling, a quantity not so easy to
determine experimentally. In this case, the unnormalized ex-
pansion of the scattering operator reads

^Ō0
~z0!z~0,j 1

1 , j 2
1!&5Bj

1
1 j

2
1

0
~c1 ,L8,c2!M0~ j 1

1!

3H ^w0
~z0!z&1

c1
c111

3S z

@z#
^w0

~z21,1!z&1
z11

@z#
^w0

~z11,1!z& D J .
D. Isotropic ingoing photon

The case of an ingoing isotropic photon can be treated in
a similar way. Settingz50 in Eq. ~30! yields

^Ō0
~0r !r~0!&5uAL,|

L8,|8~vk!u2~21! j 11 j 21c11c2Bj
1
1 j

2
1

0

3~c1 ,L8,c2!(
ab

Ma~ j 1
1!Nabr^w0

~ab!r&.

~46!

The appearance ofBj
1
1 j

2
1

0
andMa( j 1

1) follows from the re-

duction of the 6j symbol in Eq.~23! for j 2
15 j 1

11L8.

E. General XRRS cross section

The results reported so far, in this section, were derived
for fast collisions. In the remaining part of the paper, this
approximation will be often released, and the various com-
ponents of the full scattered intensity,

I MM8~vk ,vk8!5(
f
U(

n

^ f uDM8
~L8!un&^nuDM

~L !ug&

\vk1Eg2En1 iGn/2
U2

3d~\vk1Eg2\vk82Ef !, ~47!

calculated by exact diagonalization. Here,DM
(L) denotes the

components of the electric 2L-pole operator. In this case, the
coupled spectra for ingoing and outgoing isotropic photons
are given by

I ~0z!z~vk ,vk8!5 (
MM8

CL8M8;L8M8
z0 I MM8~vk ,vk8! ~48!

and

TABLE II. The coefficientsBj 1 j 2
z8 giving the probability of the

decay of thez8-polarized 2p-core hole (j 15
3
2,

1
2! by radiative decay

of a 3d-core electron (j 25
5
2,

3
2! into the 2p orbital.

j 1 z8 j 25
3
2 j 25

5
2

1
2 0 5 0

1
2 1

5
3 0

1
2 2 0 0

3
2 0

1
2

9
2

3
2 1 2

1
5

27
10

3
2 2 2

2
5

9
10
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I ~z0!z~vk ,vk8!5 (
MM8

CLM ;LM
z0 I MM8~vk ,vk8!, ~49!

respectively.

III. FAST-COLLISION APPROXIMATION

This approximation amounts to neglecting the dispersion
of the intermediate states;En andGn can then be taken as
constants, and the expansion for the resonant denominator,

S En2Eg2\v2 i
Gn

2 D 21

5S Ēn2Eg2\v2 i
Ḡn

2 D 21

3 (
k50

` S Ēn2 i Ḡn/22En1 iGn/2

Ēn2Eg2\v2 i Ḡn/2
D k, ~50!

truncated atk50. Collisions are fast when

Max~ u\v12En1Egu,Gn!@D,

with D5@(En2Ēn)
2#1/2 the energy spread of the intermedi-

ate states.
Put another way, the approximation guarantees full

intermediate-state interference, asine qua nonin the deriva-
tion of the coupled-tensor expansion for the cross section.
@Notice that, in general,G(v) reduces such an interference
for energy separations larger thanGn .#

For isotropic outgoing radiation, it can be shown that all
interference termsnÞn8 cancel out upon integration over
the final states; the fast-collision approximation is exact in
this case. Indeed, the emission matrix element, shorn of ir-
relevant factors, can be given the form

^n8ucj 2m28
†

cj 1m18
u f &^ f ucj 1m1

† cj 2m2
un&

3 (
M8M9

m1m18 ,m2m28

~21! j 12m11 j 22m282q22q28

3S j 1 L8 j 2

2m1 M 8 2m2D S j 2 L8 j 1

2m28 M 9 m18D
3S L8 L8 z8

M 8 2M 9 z8D . ~51!

Integrating over the final states setsm25m28 , as no 3d core
hole is present in the intermediate state. Forz850, it then
follows thatm15m18 , in the resulting expression. In turn,
this implies thatun&5un8&, leading to a cancellation of all
interference effects. In this case, XRRS is equivalent to an
x-ray absorption process.

For polarized outgoing radiation, an estimate of the error
brought about by the fast-collision approximation can be ob-
tained numerically. Consider theL3M5 edge in Ho31 and
Er31. The full intensitiesI (0z)z, integrated overvk8, and for

z51 and 2, are shown in Fig. 2, as a function of the
intermediate-state broadening in the range 0<Gn<4.2 eV.
~The reduced scattering amplitude has been set to unity.! In
the same figure, results for the specialG5` case~fast col-
lisions in the presence of Coulomb mixing! are given by the
intersections with the dashed vertical line I. A comparison
with the fast-collision approximation neglecting Coulomb
mixing, as from Eq.~46!, is provided by the intersections
with the dashed vertical line II.~Details about these numeri-
cal calculations will be given in the next section.!

IV. CALCULATED SPECTRA

As shown by a two-dimensional analysis of the cross sec-
tion, plotted as a function of ingoingvk and transferred
vk2vk8 photon energies~see Figs. 3, 6, 8, and 10!, XRRS
can probe the rare-earth electronic structure in different
ways.

A scan parallel to thevk axis amounts to moving through
the intermediate-state structure. The spectrum has resolution
Gn , and is obtained by retaining only one final state, selected
by the given energy transfer, in Eq.~47!.

Along the vk2vk8 axis, the final-state structure is
probed. In this case, the fixed ingoing energy selects a
Gn-wide set of intermediate states. Notice that for systems
with incomplete 4f and 5d shells, two groups of final states
are scanned:24 ~i! the 3d94 f n11 multiplet reached from the
intermediate states 2p54 f n11 and~ii ! the 3d94 f n5dm11 final
states reached from the 2p54 f n5dm11 intermediate states.

Scanningvk while keepingvk8 fixed amounts to diago-
nally crossing the plot; a superposition of the full set of
intermediate and final states is therefore recorded.9

Numerical calculations have been performed, with use of
Cowan’s Hartree-Fock and multiplet programs,25 for a num-
ber of single rare-earth ions. Our results are restricted to the
quadrupole→ dipole part of the resonance, well described
by atomic theory. All electric quadrupolar transitions from
the Hund’s rule ground state of theug&5u2p63d104 f n& con-
figuration to the full multiplet of theun&5u2p53d104 f n11&
intermediate state were calculated and similarly for all elec-
tric dipolar transitions from the intermediate- to the final-
state multiplet u f &5u2p63d94 f n11&. Notice that the fast-
collision approximation is not used in this case, as the
intermediate state is determined by exact diagonalization. In
the calculation, the Slater parametersFk andGk were re-
duced to 80% of their atomic value to account for intra-
atomic screening. The absolute energy shifts were deter-
mined by matching the numerical spectra to the experimental
data, as the calculated center-of-gravity energy is in error by
a few eV. The ion symmetry was taken to be SO2, that of a
magnet with negligible crystal-field effects.~The branching
SO3. SO2 was implemented using Butler’s group-chain
methods.26!

To account for the finite lifetime of the final states, the
energy-conservationd function was broadened into a Lorent-
zian of widthg

f
. The spectra shown here were obtained with

Gn54 eV andg
f
50.3 eV.

A. Gadolinium

Circular magnetic x-ray dichroism spectra, at theL2,3
edges of gadolinium metal, have been explained by taking
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into account dipolar transitions to the spin-polarized conduc-
tion bands, as well as quadrupole transitions to the highly
localized 4f states. Quadrupolar transitions can appear be-
low the absorption edge because of the strong Coulomb in-
teraction~8–10 eV, in the solid! between the 4f electrons
and the 2p core hole, in the final state. This amounts to
considering the following configurations~in order of increas-
ing energy!: u2p54 f 85d0& and au2p54 f 75d1&
1bu2p54 f 8Xd1&, where X denotes the hole density on
neighboring sites that compensates the extra 4f electron. No-
tice that, even for absorption to the 5d orbitals, the 4f states
are responsible for most of the core-hole screening. A
screened Coulomb interaction of comparable strength, be-
tween the 3d hole and the 4f electrons, is also active in the
XRRS final state. In this case, a scan parallel tovk2vk8
amounts to probing the u3d94 f 85d0& and
a8u3d94 f 75d1&1b8u3d94 f 8Xd1& structures, with the nar-
row resolution of the 3d core hole. With respect to circular
dichroism, XRRS affords therefore a clearer separation of
4 f and 5d spectral features.

The calculated intensityI (00)0 ~unpolarized ingoing and
outgoing photons! for the L3 → M5 part of the spectrum is
shown in Fig. 3, as a function of ingoing and transferred
photon energy.

Figure 4 gives the dependence of the spectra on the po-
larization of the ingoing photon. We notice that onlyI (10)1

has a significant integrated intensity. This behavior could
have been inferred from an analysis of the coupled-tensor
operatorsw(ab)r . In LSJ coupling, the Gd31 (4 f 7) ground
state is8S7/2, and all coupled tensorw

(ab)r , with the excep-
tion of w(00)05nh andsw

(01)15Sz , are zero. In intermediate
coupling, these vanishing operators acquire a finite, though
small value. This implies that, apart from spin, polarization
effects are negligible in Gd31. Notice that a vanishing inte-
grated intensity does not necessarily imply a vanishing spec-
trum.

As a function ofvk , gadolinium displays no spectral
structure; just a Lorentzian variation of the intensity is re-
corded across the 2p→4 f absorption edge. As shown in Fig.
4~a!, the same behavior is observed in the integrated isotro-
pic intensity, yielding a spectrum proportional to 2p→4 f
x-ray absorption.~A second peak, centered at 7250 eV, is
also present in the integrated data; this feature should be
ascribed to 2p→5d transitions.!

More spectral structure is present in the direction of the
transferred energy axis. AsEf2Eg5vk2vk8, the trans-
ferred energy should be comparable to the 3d→4 f absorp-
tion energy.

The fact that 3d→4 f x-ray absorption and XRRS result
in the same 3d94 f n11 final-state configuration may lead one
to believe that their spectral features are alike. This is not the
case, in general; the matrix elements are different for the two
spectroscopies~quadrupolar absorption followed by dipolar
emission in XRRS and a single dipolar step in x-ray absorp-
tion!, thus implying different selection rules and line shapes.

An analysis of the expectation values of the coupled ten-
sorsw0

(ab)r for anLSJ-coupled ground state is given in Ap-

FIG. 2. The integratedI (0z)z for Er ~solid line! and Ho~dashed
line! obtained from exact diagonalization, in the range
0<Gn<4.2. A comparison with the fast-collision approximation,
with or without Coulomb interactions, is provided by the intersec-
tions with the vertical lines I and II, respectively.

FIG. 3. Calculation of the
resonant Raman spectrum of
Gd31 as a function of excitation
energyv k and transferred energy
vk2vk8. Only the L3M5-edge
spectrum is displayed.
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pendix B. A comparison with the values obtained for triva-
lent rare-earth ions shows thatLSJ coupling gives a good
agreement for spin-independent operators. For spin-
dependent operators trends along the rare-earth series are
well described.

Intensities integrated from2` to v1 are depicted in Fig.
4~c!. Notice that a vanishing integrated intensity does not
necessarily imply a vanishing spectrum; normally, however,
if the integral over a spin-orbit split edge is small, the spec-
trum has low intensity at that edge.

For v157243 eV, the numerical results are compared to
the experimental data24 in Fig. 5. The good agreement pro-
vides further evidence for the quadrupolar nature of the pre-
edge structure.

B. Dysprosium, holmium, and erbium

This section briefly discusses numerical results for
Dy31 (4 f 9 ground state,6H15/2), Ho

31 (4 f 10, 5I 8), and
Er31 (4 f 11, 4I 15/2). The unpolarized spectra are depicted in
Figs. 6, 8, and 10, respectively. By comparing them to
3d→4 f x-ray absorption spectra significant differences
emerge.

For polarized ingoing radiation the integrated spectra are
displayed in Figs. 7, 9, and 11. In the spectra of part~c! of
the figures the value of a givenI (z0)z, at an energyvk well
above the 2p3/2 threshold, is expressible as a linear combi-
nation of expectation valueŝw0

(ab)r&. Ingoing-photon circu-

lar dichroism selects an angle-dependent linear combination
of I (10)1 andI (30)3 ~analogous to the case of 2p x-ray circular
dichroism!. As a function of cosu, with u the angle between
the direction of the incoming light and the magnetization
axis, I (10)1 and I (30)3 behave like Legendre polynomials of
order 1 and 3, respectively.

V. CONCLUSION

Working within the framework of a single-ion model, this
paper has developed a theory of XRRS in the rare earths. A
symmetry analysis of the resonance has been presented; ex-
tensive numerical calculations have also been discussed and
compared with recent experimental data.

The symmetry analysis provides a poweful tool for disen-
tangling the large variety of polarization responses stemming
from a two-photon process. As a result of a coupled-
multipolar expansion, the scattering cross section is ex-
pressed as a linear combination of pairs of tensors of increas-
ing rank; each pair consists of a polarization response~the
angular dependence! and the ground-state expectation value
of a frequency-dependent operator~the electronic transition!,
coupled together to give a scalar. For a given experimental
setup, the contributions to the scattered intensity can then be
determined in any point-group symmetry. Particularly simple
expressions are obtained in the case of ingoing and/or out-
going isotropic radiation. Furthermore, the integrated inten-
sity can be conveniently factorized into an excitation and a
deexcitation components.

Full-multiplet calculations in cylindrical symmetry have
been reported for the resonance 2p→4 f , 3d→2p in the
rare-earth ions Gd31, Dy31, Ho31, and Er31. Combined
with the results of the symmetry analysis, these calculations
can provide a good description of the integrated intensities,

FIG. 4. Gd31 spectra integrated along thevk2vk8 axis. From
top to bottom:~a! Numerical evaluation ofI (00)0 ~solid line!; the
dashed line gives the integral of the solid line along thev k axis.
The integrated intensity is normalized so that the maximum of the
isotropic integrated spectrum corresponds to the maximum height
of the peak. Notice the scaling.~b! Calculation of I (10)1 ~dashed
line!, I (20)2 ~dash-dotted line!, I (30)3 ~dotted line!, and I (40)4 ~dash-
dot-dotted line!. ~c! The curves given in~b! integrated along the
vk axis.

FIG. 5. Comparison between the calculated resonant Raman
spectrum and the experimental data of Krischet al., at the reso-
nance energy:vk57243 eV.
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as shown by the agreement between our Gd31 spectra and
the data recorded by Krisch and co-workers, using isotropic
ingoing and outgoing radiation. In this case, the quadrupolar
nature of the pre-edge part of the spectrum is confirmed.
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APPENDIX A

This appendix provides a short summary of results for
n j symbols.

A 3 j symbol with two equal quantum numbers can be
written as

S l a l

2l8 a l
D 5

r la~l8al!

r la
nla5 r̄ la~l8al!nla

a50

→
r la~l!

r la
nla5 r̄ la~l!nla . ~A1!

(3 j symbols of this kind appear in the definition of tensors
acting on a single atomic shell.! Using the definition of
nla , Eq. ~24!, we have

r la5r la~ l !5
1

2a
~2l !!

~2l2a!!
, ~A2!

so thatr̄ la( l0l )51. r la(l8al) and r̄ la(l8al) appear there-
fore as naturally defined 3j symbols. Settinga51, we find

r l1~l8ql!5^ ll8uLqu ll&; ~A3!

in a similar way,r 1
2 1
(s8qs) provides the matrix element of

Sq . Whenq50, the matrix element is fully determined by
r la(l); notice that these functions

r l0~l!51,

r l1~l!5l,

FIG. 6. Calculation of the
resonant Raman spectrum of
Dy31 as a function of excitation
energyvk and transferred energy
vk2vk8. Only the L3M5-edge
spectrum is displayed.

FIG. 7. Dy31 spectra integrated along thevk2vk8 axis. The
curves are depicted according to the caption of Fig. 4.
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r l2~l!5 1
2 ~3l22 l2!,

r l3~l!5 1
2 @5l223l~ l22 1

3 !#,

with l25 l ( l11), bear a strong resemblance to the Legendre
polynomials.

6 j and 9j symbols with degenerate triads can be reduced
by use of the normalization constantsnla andnabr . @nabr is
defined by Eq.~25!.# The present work implements the re-
duction formulas

H j j x

j 8 j 8 JJ 55
~2 !2 j12 j 8njxnj 8x , if J5 j1 j 8,

~2 !2 j.1x
nj,x

@ j.#nj.x
, if J5u j2 j 8u,

~A4!

and

H j j a

j 8 j 8 b

j1 j 8 j1 j 8 c
J 5~2 !a1b

njanj 8b
@ j1 j 8#nj1 j 8c

nabc ,

~A5!

where j, and j. denote the smaller and greater value ofj
and j 8, respectively.

APPENDIX B

This appendix reports analytical results for^w0
(ab)r& for a

Hund’s rule ground state.
Consider the matrix element

^LSJMJuw0
~ab!r uLSJMJ&5^LSJMJu@vatb#0

r uLSJMJ&nabr
21 ,
~B1!

with the tensor coupling to a totalr defined by Eq.~2!. The
application of the Wigner-Eckart theorem, followed by a re-
coupling, yields

FIG. 8. Calculation of the
resonant Raman spectrum of
Ho31 as a function of excitation
energyvk and transferred energy
vk2vk8. Only the L3M5-edge
spectrum is displayed.

FIG. 9. Ho31 spectra integrated along thevk2vk8 axis. The
curves are depicted according to the caption of Fig. 4.
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^LSJMJuw0
~ab!r uLSJMJ&

5@J#~21!J2MJnabr
21 S J r J

2MJ 0 MJ
D

3H L L a

S S b

J J r
J ^LivaiL&^Si tbiS&. ~B2!

The reduced matrix elements are determined as follows.
Given the one-electron matrix elementsva and tb,

^ lluv0
au ll&5 r̄ la~l!,

^ 1
2sut0

bu 12s&5 r̄ ~1/2!b~s!, ~B3!

with r̄ la defined in the preceding appendix, consider the state
uL,M5L&. The matrix element ofva becomes

^LLuv0
auLL&5(

l
r̄ la~l!, ~B4!

where the holes~or electrons! contained inuLL& are labeled
by l andl. @More~less!-than-half-filled shells are described
in terms of holes~electrons!.# On the other hand, the Wigner-
Eckart theorem yields

^LLuv0
auLL&5S L a L

2L 0 L D ^LivaiL&. ~B5!

Combining Eqs.~B4! and ~B5!, we have

^LivaiL&5nLa
21(

l
r̄ la~l!. ~B6!

The reduced matrix element oftb is obtained in a similar
way.

SettingMJ5J in Eq. ~B2! to obtain a magnetic ground
state and applying the 9j -symbol-reduction formula of Ap-
pendix A, we find

^LSJJuw0
~ab!r uLSJJ&5FJL

ar(
l

r̄ la~l!, ~B7!

where

FIG. 10. Calculation of the
resonant Raman spectrum of
Er31 as a function of excitation
energyvk and transferred energy
vk2vk8. Only the L3M5-edge
spectrum is displayed.

FIG. 11. Er31 spectra integrated along thevk-vk8 axis. The
curves are depicted according to the caption of Fig. 4.
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FJL
ar5H 2

@J#nJr
2

@L#nLa
2 , J5L2S, l523,22,21, . . . ,

1 J5L1S, l53,2,1,. . . ,
~B8!

that is, the matrix element~B2! expressed as a sum of ex-
pectation values of the one-particle operatorva. The function

FJL
ar accounts for the coupling ofL andS to a totalJ; the

summation overl must be performed as indicated.~The ma-
trix elements oftb are diagonal.!

In simple cases, well-known results are recovered. Given
Lz52 lw0

(10)1, we havel(l r̄ l1(l)5(ll5L, so that

^Lz&52 l ^w0
~10!1&5H 2

J~L11!

J11
J5L2S,

2L J5L1S,

~B9!

that is, the expression obtainable by settingJ5Jz5L6S in
Landé’s formula. Also, given Sz52sw0

(01)1, we have
s(l r̄ l0(l)5s(l15S, so that

^Sz&52s^w0
~01!1&5H JS

J11
J5L2S,

2S J5L1S.

~B10!

In LSJ coupling, spin enters the matrix element via Eq.
~B8!. As a result,^w0

(ab)r& is b and r independent, for a
more-than-half-filled shell; a specific example,^w0

(2b)r&, of
this behavior is depicted in Fig. 12.~Spin-independent op-
erators are accurately described byLSJ coupling; for spin-
dependent ones deviations are found, as the spin-orbit cou-
pling mixes in otherJ values.!
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FIG. 12. Ground-state expectation values of coupled tensor op-
erators^w0

(2b)r&. The solid lines give their values inLSJ coupling.
Dashed lines are the values calculated for trivalent rare-earth atoms,
where the dashed line gives^w0

(20)2&, the dotted linê w0
(21)1&, and

the dash-dotted linêw0
(21)3&. The related̂w0

(ab)r& in LSJ coupling
are those that are equal forn51.
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